CHROM. 5423

THIN-LAYER CHROMATOGRAPHIC BEHAVIOR OF A NUMBER OF METALS ON DEAE-CELLULOSE IN ORGANIC SOLVENT–SULFURIC ACID MIXTURES

K. OGUMA AND R. KURODA

Laboratory for Analytical Chemistry, Faculty of Engineering, University of Chiba, Yayoi-cho, Chiba (Japan)

(Received May 4th, 1971)

SUMMARY

The thin-layer chromatographic behavior of a number of metals on DEAEcellulose and on microcrystalline cellulose, Avicel SF, has been surveyed in binary solvent mixtures containing H_2SO_4 and an organic solvent. R_F values were measured as a function of the concentrations of H_2SO_4 and the organic solvent. Although ionexchange adsorption of sulfatocomplexes on DEAE-cellulose can be observed in aqueous H_2SO_4 solutions, enhanced ion exchange is found to occur in binary media containing a protic solvent such as methanol and acetic acid. Even though increased retention of many metals, including sulfatocomplex-forming metals, on DEAE-cellulose can also be observed in H_2SO_4 -aprotic solvent mixtures, such as acetone and dioxane, the mechanism involved is not ion exchange proper, but partition appears to play an appreciable role.

The chromatographic systems developed permit many useful separations of analytical interest to be conducted effectively.

INTRODUCTION

The paper and thin-layer chromatographic (TLC) behavior of a number of metals on DEAE-cellulose (abbreviated to DEAE) has already been investigated in different binary solvent mixtures consisting of HCl (ref. 1,2), HNO₃ (ref. 3) or HSCN (ref. 4) and an organic solvent. R_F values of Fe(III), ReO₄⁻, La, In and UO₂²⁻ on DEAE as well as aminoethyl papers in aqueous H₂SO₄ of varying concentration have been reported by LEDERER AND OSSICINI⁵.

This work has been extended to investigate the TLC behavior of 46 metals on DEAE in binary solvent mixtures containing H_2SO_4 , which should provide a better understanding of the system involving weakly basic ion exchangers. Generally metals forming sulfatocomplexes exhibit a stronger adsorption on DEAE in mixed solvents containing a protic solvent like methanol and acetic acid than that in aqueous H_2SO_4 media. Although considerable retention of metals on DEAE can be observed in acetoneand dioxane- H_2SO_4 mixtures, competitive partition may play an important role in the case of metals forming sulfatocomplexes, in addition to the contribution of the ion-exchange process.

The solvent systems investigated permit many useful chromatographic separations of analytical interest to be conducted very effectively on DEAE.

EXPERIMENTAL

Test solutions

Unless otherwise mentioned 0.1 M stock solutions (0.1 N in H₂SO₄) were prepared from the sulfate, oxide or metal. For Ti(IV), Zr, Hf, Hg(II) and In the stock solutions were 3 N in H₂SO₄. For Bi(III) and Th, 3 N HNO₃ solutions were prepared using the metal and nitrate, respectively. Stock solutions were adjusted to 0.1 N in HCl for platinum metals^{*} and Au(III), 3 N for Sb(III) and 6 N for As(III) and Sn(IV). Ammonium or sodium salts of Mo(VI), W(VI), Re(VII), Se(IV) and Te(IV) were simply dissolved in deionized water. For Nb see the previous paper⁴.

Preparation of the thin-layer plates

A cellulose anion exchanger, DEAE (diethylaminoethylcellulose, Serva, for TLC) and a microcrystalline cellulose, Avicel SF (Avicel Sales Division, FMC Corp.) were used as adsorbents. A portion of DEAE, about 6.5 g, slurried with 30 ml of deionized water and 20 ml of 0.5 M (NH₄)₂SO₄-0.02 M H₂SO₄ solution, was placed in a large column, washed with a sufficient volume of the acid sulfate solution above and finally with deionized water. Two 6.5 g portions of DEAE, prepared thus, were combined, slurried with 29 ml of deionized water, and spread to a thickness of 250 μ m on five 20 × 20 cm glass plates. The plates were dried 2.5 h at 40° after air-drying for I h and stored in a desiccator containing a saturated KBr solution.

For the preparation of the microcrystalline cellulose plates, 18 g of Avicel SF was soaked in 100 ml of deionized water and centrifuged. After slurrying with 30 ml of deionized water, the Avicel SF was spread on five 20×20 cm plates to a thickness of 250μ m. The plates were dried and stored as above.

Application and detection

The application procedure was the same as described in the previous paper⁴. The solvent systems investigated were aqueous H_2SO_4 solutions of varying concentration, and binary mixtures consisting of an organic solvent and an aqueous H_2SO_4 solution of varying concentration. Methanol, acetic acid, acetone and dioxane were used as the organic solvent.

The developing and detection procedures were also the same as before⁴, with the exception of Be, Mg, Ti(IV), Cr(III), Zn, Cd, Al, Ga and In, which were detected by spraying with 1% 8-hydroxyquinoline in ethanol, followed by 15% NH₄OH. UV light was used when necessary.

^{*} Before use we let them stand for 1 till 2 months. See G. BAGLIANO AND L. OSSICINI, J. Chromatogr., 19 (1965) 412 for the effect of ageing on R_F values of Rh(III), Ir(III) and Ru(III) in HCl solutions of varying concentration.

RESULTS AND DISCUSSION

Adsorption from aqueous H_2SO_4 solutions

 R_F values for 46 metals chromatographed on DEAE and Avicel SF in aqueous H_2SO_4 solutions are illustrated in Fig. 1 as a function of H_2SO_4 concentration. As can be seen, the metals, which form sulfatocomplexes and adsorb on a strongly basic resin^{6,7}, can also adsorb on DEAE, showing increasing retention with decreasing concentration of H_2SO_4 . Sc, Ti(IV), Zr, Hf, Nb, Cr(III), Mo(VI), W(VI), I^{*}e(III), Rh(III), Ir(IV), Ga, In, As(III), Bi(III), Se(IV), Th and U(VI) are among those

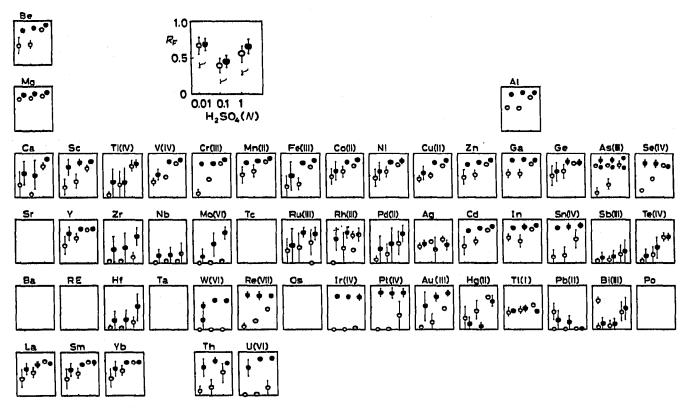


Fig. 1. R_F values of metals chromatographed on DEAE and Avicel SF in aqueous H_2SO_4 solutions. $\bigcirc = DEAE; \bigcirc = Avicel SF$. All the R_F values on the two adsorbents were obtained at the three concentrations of H_2SO_4 , 0.01, 0.1 and 1N. For convenience, R_F values on Avicel SF shifted the abscissa arbitrarily to the right.

metals known to exhibit some adsorption on the strongly basic resin in H_2SO_4 solutions particularly at concentrations less than I N. There are marked differences in the R_F values obtained on DEAE and Avicel SF for the following metals: Zr, Hf, Nb, Mo(VI), W(VI), Re(VII), Rh(III), Ir(IV), Pt(IV), Au(III), Se(IV), Th and U(VI). All of these belong to the group of metals adsorbing on the strongly basic resin.

In the case of Re(VII), Pt(IV) and Au(III) no information is available about their adsorption on the strongly basic resin from H_2SO_4 or sulfate solutions, but obviously it can be assumed that those metals which exhibit pronounced differences in R_F between DEAE and Avicel SF adsorb on DEAE by ion exchange in aqueous H_2SO_4 media.

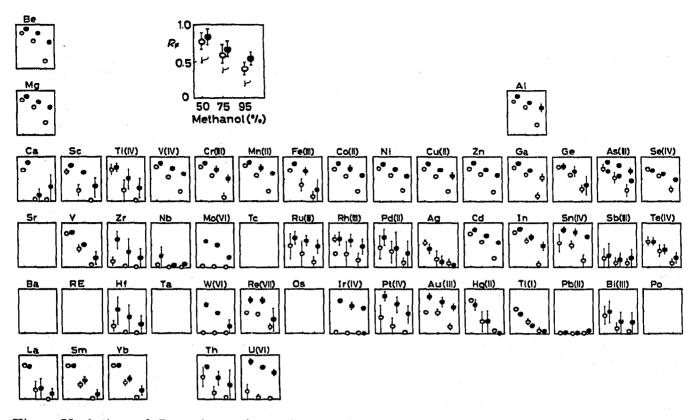


Fig. 2. Variation of R_F values of metals on DEAE and Avicel SF with the concentration of methanol in methanol-1N H₂SO₄ media. $\bigcirc = DEAE$; $\bigcirc = Avicel SF$. All the R_F measurements were conducted at 50, 75 and 95% methanol concentrations. For convenience R_F values on Avicel SF shifted the abscissa arbitrarily to the right.

Adsorption from a mixture of H_2SO_4 and a protic solvent

The R_F variation of metals on DEAE and Avicel SF with increasing additions of methanol to $I N H_2SO_4$ is shown in Fig. 2. The addition of methanol to the H_2SO_4 solution generally lowers the R_F values on DEAE and Avicel SF to some extent in the case of nearly all the metals tested. The exception is Au(III); the R_F of Au(III) on DEAE starts at 0.15 in the aqueous $I N H_2SO_4$, and passes through a broad maximum at 50-75% methanol, and then reaches around 0.15 on going to 95% methanol. The same exceptional behavior of AuCl₄⁻⁻ on DEAE-paper in HCl-ethanol mixtures was also noted by LEDERER AND MOSCATELLI².

It is worth noting that metals forming sulfatocomplexes and adsorbing on the strongly basic resin increase their retention on DEAE very rapidly as compared to Avicel SF with increasing methanol concentration, see for example Zr, Hf, Mo(VI), W(VI), Ir(IV), Th and U(VI).

The R_F values on DEAE and Avicel SF in 1:1 methanol-H₂SO₄ mixtures are plotted as a function of H₂SO₄ concentration in Fig. 3. A pronounced lowering of R_F values on DEAE, as compared to Avicel SF, is particularly marked at lower concentrations of H₂SO₄ for metals which show adsorption on the strongly basic resin. To explain these observations, ion exchange can reasonably be assumed to be the mechanism controlling the R_F values for sulfatocomplex-forming metals in methanol-H₂SO₄ media.

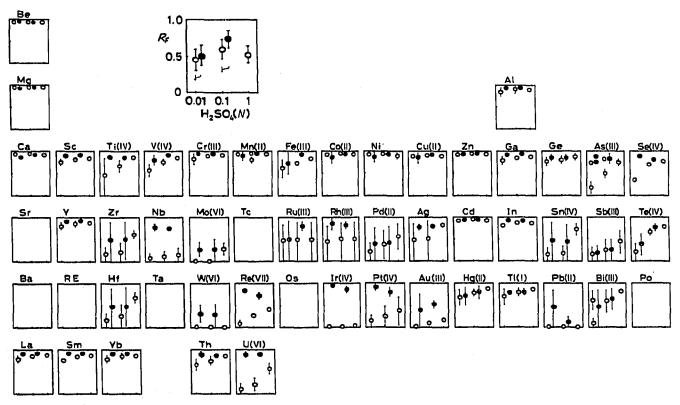


Fig. 3. Variation of R_F values on DEAE and Avicel SF with the concentration of H_2SO_4 in methanol- H_2SO_4 media (1:1). $\bigcirc =$ DEAE; $\bigcirc =$ Avicel SF. All the R_F measurements were conducted at the three H_2SO_4 concentrations, 0.01, 0.1 and 1N. For convenience R_F values on Avicel SF shifted the abscissa arbitrarily to the right.

 R_F values for metals on DEAE and Avicel SF in 1:1 and 3:1 (DEAE only) acetic acid-H₂SO₄ media are given in Table I as the function of H₂SO₄ concentration. There are no marked differences in the R_F values on DEAE and Avicel SF for most of the metals over the H₂SO₄ concentration range tested, except for Sc, Zr, Hf, Nb, Mo(VI), W(VI), Re(VII), Ir(IV), Pt(IV), Au(III), Pb(II), Th and U(VI). With increasing acetic acid concentration the R_F values for these metals on DEAE decrease rapidly, almost remaining near the start, although Re(VII) and Au(III) maintain about the same chromatographic distribution regardless of the amounts of acetic acid added. As indicated by LEDERER AND MOSCATELLI², the hydration is perhaps already very poor for the complexes of Au(III) and Re(VII). The differences in R_F values between DEAE and Avicel SF can be explained on the same basis as the mechanism in the methanol-H₂SO₄ mixtures.

Adsorption from a mixture of H_2SO_4 and an aprotic solvent

The trends of the R_F values of metals on DEAE and Avicel SF were investigated when acetone or dioxane was added as the aprotic solvent to H_2SO_4 solutions of varying concentration. Results for the R_F measurements are given in Tables II and III.

In most cases the addition of increasing amounts of the aprotic solvent to H_2SO_4 solutions causes the R_F values on DEAE to be lower in both the acetone- and dioxane- H_2SO_4 media. However, this is not always the case. R_F values for Au(III) and Re(VII) in aqueous H_2SO_4 solutions increase with the addition of acetone or dioxane,

TABLE I

 R_F values (× 100) on DEAE and Avicel SF in acetic Acid-H₂SO₄ mixtures

Metal		$0.01N H_2SO_4$			0.1N I	H ₂ SO ₄		IN H ₂ SO ₄		
	Adsorbent	D	D	A	.D	D	A	D	D	A
	Acetic ucid (%)	75	50	50	75	50	50	75	50	50
Ag		39s	84	7 I	39s	84	63	37	67	59
Al		35	95	90	45	95	91	38	95	{86 {93
As(III)		{16 56	${22 \\ 72}$	{67 {83	{ 24 {57	{3 7 {73	{66 {86	54	70	}66 86
Au(III)		3	6	82	8	16	81	31	41	79
Be	. *	88	94	90	88	94	93	76	92	90
Bi(III)		76	82	84	7 ⁸	86	82	61	84	80
Ca		4 86	69	80	0	73	85	. 0	86	85
Cd	· .		92	81	83	93	84	46	90	79
Co(II)		85	92	88	81	93	85	{48 {89	93	84
Cr(III)	ана. Селото се	24	99	97	13	57	86	33	94	{80 {96
Cu(II)		87	93	86	87	93	84	{48 {89	92	84
Fe(III)		99	96	92	98	93	93	{30 {99	{74 {99	83
Ga		645	89	86	60s	84w	88	39	95	84
Ge		{28 {58	67	76	59	63W	78	61	78	80
Hf		6	14	415	б	12	428	7	29	64W
Hg(II)		92	94	8 1	92	85	82	89	86	80
In		45	96	∫ 84	58w	94	∫ 88	42	88	82
				l93			ીકુટ્ર			
Ir(IV)		0	4	74	0	5	68	5	4	65
La		22	74	79	21W	•	82	31W	83	84
Mg	5	84	.95	89 88	49s	91	90 87	80 89	94	84 86
Mn(II) Mo(VI)		86	91 0	18	84 0	92 0	24	3	93	∫ 15
MO(V1)		0	0	10	U U	U	-4	3	4	39
Nb		5	6	66	4	7	72	6	9	67
Ni		5 83	93	86	80	93	83	{45 86	92	84
Pb(II)		o	, 0	8o -	0	o	15	Ò	о	ο
Pd(II)		0	36s	70	ο	315	69	16w	34W	67
Pt(IV)		o	9	72	4	3	77	5	15	76
Re(VII)		4 6	9	78	12	24	79	38	50	78
Rh(III)		6	{255 {90	56	31	24W	59	16w		55
Ru(III) .		· O	48s	67W		275	67	20W	385	611
Sb(III)		52	47	55W		46w			35	48%
Sc		14	50	80	11	46	79	22	67	82
Se(IV)		47	59	71	46	56	71	54	74	68
Sm		29	74W	77	17	73	/ 80	33	82	81
Sn(IV)		25	29W		20	27%		31	59	80
Te(IV)		17	275	255		36%		22	59	59
Th		21	38	76	1 4	15	75	{7 22	61	78
Ti(IV)		7	358	41s	o	18w	′ 4 9 5	13	64	72

D = DEAE; A = Avicel SF; w = weak tailing, difference between R_F front and R_F rear = 0.3~ 0.5; s = strong tailing, difference between R_F front and R_F rear > 0.5.

Metal		$0.01 N H_2 SO_4$			$o.I N H_2 SO_4$			$I N H_2 SO_4$		
	Adsorbent	D 75	D 50	A 50	D 75	D 50	A 50	D 75	D 50	A 50
	Acetic acid (%)									
T1(I)		83	89	73	84	89	69	86	90	63
U(VI)		5	7	80	4	6	82	5	21	82
V(IV)		57W	87	81	47s	86	81	{40 {65	{78 {87	80
W(VI)		о	ο	25W	ο	ο	о	ò	ò	{ o
Y		30	76w	78	26	75W	82	39	82	ો 30 83
Ŷb		29	77W	78	23	74W	81	35	82	82
Zn		80	93	83	79	92	85	44	91	79
Zr		5	9	425	5	9	43s	5	23	72

TABLE I (continued)

and then do not vary appreciably with further addition of acetone or dioxane. Insensitive variation of R_F values with increasing additions of acetone or dioxane can also be seen for the platinum group of metals, Ge, Sn(IV), As(III), Sb(III), etc.

LEDERER AND MOSCATELLI² found that the adsorption of Zn and Cd on DEAEpaper from acetone-HCl and ethanol-HCl mixtures increases with the concentration of ethanol and decreases with the increasing concentration of acetone. This kind of difference between a protic solvent and acetone or dioxane was not found in this work for those metals which form strong sulfatocomplexes, because of the strong retention of these complexes on DEAE in different media. Perhaps this difference between two kinds of solvents can be reflected by the principal mechanism controlling the R_F values. The retention of metals forming sulfatocomplexes on DEAE in acetoneand dioxane-H₂SO₄ media may not only be controlled by ion exchange proper, but partition may also play an important role in determining the R_F values. The rather higher R_F values of the platinum group of metals, Mo(VI), W(VI), U(VI), etc. on Avicel SF as compared to those of metals exhibiting no evidence of sulfatocomplex formation indicate an appreciable participation of the partition mechanism in the case of sulfatocomplexes in acetone- and dioxane-H₂SO₄ media.

Acetone and dioxane are sufficiently non-polar and not so effective as protic solvents in destroying the hydration clouds around the metal ions. This may account for the inadequate participation of the ion-exchange mechanism in acetone- and dioxane- H_2SO_4 media.

SEPARATIONS

Inspection of the R_F values of metals chromatographed on DEAE in methanol-, acetic acid-, acetone-, and dioxane-H₂SO₄ mixtures will allow many useful separations of analytical interest to be conducted effectively. Typical chromatograms involving multicomponent separations are illustrated in Fig. 4.

The time necessary for the separation is dependent on the volume ratio, concentration of sulfuric acid, and the type of organic solvent and adsorbent. When

TABLE II

 R_F values (× 100) on DEAE and Avicel SF in acetone- H_2SO_4 mixtures See Table I for symbols, s, w, D and A.

I etal		0.01 1	o.or $N H_2 SO_4$			$o.i N H_2 SO_4$			$I N H_2 SO_4$		
	Adsorbent	\overline{D}	D	A	D	D	A	D	D	A	
	Acetone (%)	75	50	50	75	50	50	75	50	50	
g		13	40	48	13	46	54	12	50	38	
1		õ	38	53	3	43	66	10	72	72	
s(III)		∫14	∫ 13	∫6 6	∫19	∫29	∫62	46	68	∫61	
		\ 49	[6ē	[88	ໄ 43	 [62	ી ⁸ 4	_		[87	
a(III)		515	43	`83w	31	57	97	63	75	~98 98	
3		5	38	68	12	43	78	4 I	80	82	
(111)		7	5	13	5	6	II	7	22W	37	
ı 1		0	18w	43W	6	20W	26s	0	14	6	
b(II)		0	28 26	50	4	41	64 65	20 18	74	71 67	
(111)		0		48	5 0	43 28	65 64	8	73 67		
.(II)		: 0	15 26	47	3		64 64	18 1	75	70 67	
(III)		0	20W	44 28s		44 17	67	13	75 58	69	
(11) 1	·	3	31W	30	4 3	38	64	11	70	70	
0		5 275	368	68w	31	59 59	73	56	76 74	77	
f		0	4	8	0	4	12	3	11	45	
g(11)		24W	52	59	30	56	72	45	78	74	
6 (~ - / l		3	20	53	3	29	66	20	65	69	
(IV)		0	0	65	4	5	67	14	6	64	
1		0	11	32	ò	ıš	40	3	52	46	
g		3	48	57	8	46	67	22	76	71	
n(II)		ŏ	34	58	4	46	66	23	Śo	70	
o(VÍ)		0	ŏ	45	ò	်ဂ	∫34	ŏ	ο	∫ 55	
、 ,							198			199	
Ъ		0	0	22W	o	0	21W	4	6	28	
i		0	28	47	4	43	63	16	73	64	
b(II)		ົ 0	0	23W	Ó	0	12	о	0	Ó	
d(II)		11	22W	48s	18	275	76w	48	58w	83	
t(IV)	Ċ	∫ 4	14	90	13	14	89	15	36s	93	
·	· · · ·	\ 20	_								
e(VII)		∫ 3	∫21	93	43	∫ 43	95	61	78	94	
		\ 57	\7 2			 164				-	
h(III)		12	275	64 w	12	23W	56w	17	345	58	
u(III)		12	27S	34s	13	23W	57W	20	38s	57	
o(III)		19	11	32W	16	13	38w	15	25W	53	
		0	8	50w	0	16	64	7	50	68	
e(IV)		II	20	61	21	43	70	58	44	69	
n (TN)		0	9	34	0	17	45	4	51	-49	
n(IV)		37₩		57s	32W	388	47s	39W	548	84	
e(IV)		0	5	8	0	12	23W	10	74	43	
		3	6	42 W	0	13	57	4	33	59	
(IV)		0	5	10	0	14	33s	9	39w	56	
(I) (VI)		5	26	32 66	6	42	37	10	45	33	
(VI) (1V)		0 0	4		0	5	70 68	5	14	74	
(\mathbf{V})		0	24	51 98	3	41 0	98	22 0	71 0	72 ∫8ç	
((*1)		0	. 0	90	υ.	U	90	0	0		
		~		40						<u>ી</u> 99	
b 🖓		0	13 14	40	0	23	50 48	4	52	54	
n			28	35 48		23	62	4	52 73	51 68	
r .		0		12	4	43		17	.73		
*		U I	4	14	. 0	4	15	3	II	49	

.

TABLE III

 R_F VALUES (×100) ON DEAE AND AVICEL SF IN DIOXANE-H₂SO₄ MIXTURES See Table I for symbols, s, w, D and A.

Metal		0.01 N	H_2SO_4	L	0.1 N .	H_2SO_4		IN H ₂ SO ₄		
	Adsorbent	D	D	A	D	D	A	D	D	A
	Dioxane (%)	75	50	50	75	50	50	75	50	50
Ag	anna anna anna anna anna anna anna ann	6	30	49	9	39	58	16	52	50
AĨ		10	30W	82	11	45	85	35	72	89
As(III)		∫13	∫20	∫71	∫19	∫ 28	∫69	∫40	64	∫63
		147	 63	∖ 90 -	\ 49	ી ઉ7	 [86	15 4		\ 83
Au(III)		28	37	95	28	44W	93	60	74	96
Зе		4	24	62	13	40	81	51	73	91
Bi(III)		14	14	375	; 15	15	{38s {89	20W	41	{76 {94
Ca		0	13	44S	6	20W	338	19W	36s	12
Cd		0	22	56	7	39	76	44	72	86
Co(II)		0	21	56	10	38	75	42	70	85
Cr(III)		O	13	528	4	32	77	29	72	87
Cu(II)		0	23	53	9	38	76	41	69	86
Fc(I11)		0	7	48w		19	77	22	61	87
Fa		12	29W	83	8	45	85	35	72	88
Ge		28s	45	72W	38	58w	82	54	77	85
lf		5	. 7	25W	6	. 9	308	7	21	65
lg(11)		16w	{ 8	0	18	∫o	74	Įο	∫ o	97
			\ 47			1 48	_	lu	[88	
n		12	31 W	83	10	40w	83	26	72	88
r(1V)		3	0	81	0	o	77	0	0	83
a		4	22W	52	4	31	66	12	62	71
/Ig		7	35	72	12	42	80	50	73	89
An(II)		0	27	65	10	42	79	44	72	85
Mo(VI)		0	0	99	0	0	99	∫o	7	∫ 75
						-	0	۲ę		J ðö
Nb		0	5	20W		6	48	-8	0	425
Ni		0	21	55	10	39	74	40	70	83
Pb(11)		0	0	24W		0	21W		, 0	ູ5
Pd(II)		14	14	438	14	21 W	{ <u>0</u>	38w		87
					-		\80		\54 W	
Pt(IV)		7	13	92	9	21W	91	29W	42	94
Re(V11)		0	1 3	92	22	{ 39	91	51	72	95
1751. ZT 151			156	0.	(61				° -
Rh(III)		34s	388	81	{20 }60	29	79	348	73	83
					l 63	{55				
Ru(111)		0.00	205		2 I W	(73 21W		285		85
Sb(III)		24W 22	305 15	448		210	75 528		73	
Sc Sc		6	19W	478 66	27 7	26	78	34 18	41W 57	80
Se(IV)		ں ۱۰	15	63	18	41	71	51	57 71	75
56(17)		{s	+5	0.5	1.0	* † *	/*	2.	/-	75
Sm .		3	18w	52	0	26	68	13	60	72
Sn(1V)		. 35w		-	45\\			- 5 51	69	88
Te(IV)		0	5	- 576 14	4	23W			63	71
Th		6	9	73	; 6	15	79	· 3/ 9	45	81
Ti(IV)		ő	9	268		338	70	19%		81
TI(I)		0	23	40	š	38	49	18	50	48
U(VI)		0	-5	83	0	5	84	7	19	86
V(1V)		3	27	62	11	41	79	46	72	85
W(VI)		0	-/	37	0		97	ч° О	,- 0	
Y		7	26w	Ğ1	6	39W		16	65	76
ŶЪ		6	29	58		39\\		15	65	75
Zn		o	21	54	58	37	76	40	72	śč
Zr		4	6	328		8	445		17	- 74
		-r	_	• •	-1		-1-1-	-	- /	

۰.

٠.

compared on the same basis, the developing time in each solvent system is in the order:

Aqueous > acetone \geq methanol > dioxane > acetic acid.

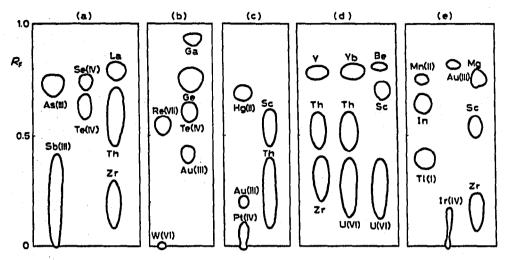


Fig. 4. Various separations, DEAE used throughout. (a) Methanol-IN H₂SO₄ (1:1); (b) acetic acid-1N H₂SO₄ (1:1); (c) acetic acid-0.1N H₂SO₄ (1:1); (d) dioxane-1N H₂SO₄ (1:1); (e) acetone $-1N H_2 SO_4 (1:1)$.

Decreasing the concentration of H_2SO_4 also helps to shorten the time of separation. Development on Avicel SF usually needs about twice the time of development on DEAE in the same solvent mixture. Although not illustrated, the following separations were also feasible:

DEAE-aqueous I N H_2SO_4 (time: I h 30 min) Nb(0.00-0.25)-Zr(0.28-0.87)-Y(0.91-0.98)Zr(0.72-0.88)-Ti(IV)(0.90-0.95)W(VI)(0.00-0.22)-Re(VII)(0.47-0.57)DEAE-acetone-I $N H_2SO_4(3:I)$ (time: I h 50 min) Te(IV) (0.02-0.16)-Ge(0.45-0.65) Te(IV) (0.03-0.18)-Se(IV) (0.57-0.65) Sb(III) (0.00-0.05)-As(III) (0.40-0.60)

REFERENCES

- I R. KURODA, N. YOSHIKUNI AND K. KAWABUCHI, J. Chromatogr., 47 (1970) 453.
- 2 M. LEDERER AND V. MOSCATELLI, J. Chromatogr., 13 (1964) 194.
- 3 K. ISHIDA AND R. KURODA, Bunseki Kagaku, 19 (1970) 81.
- 4 K. OGUMA AND R. KURODA, J. Chromatogr., 52 (1970) 339.
- 5 M. LEDERER AND L. OSSICINI, J. Chromatogr., 15 (1964) 514.
- 6 L. DANIELSSON, Acta Chem. Scand., 19 (1965) 670. 7 F. W. E. Strelow AND C. T. C. Вотнма, Anal. Chem., 39 (1967) 595.